THE LAMINAR BOUNDARY LAYER, TAKING INTO
ACCOUNT RADIATIVE ENERGY TRANSFER

Yu. P. Golovachev UDC 532.517.2

The integral-differential energy equation is solved, taking info account the viscous dissipa-
tion, convection, thermal conductivity, and radiative transfer, without restrictions on the
optical thickness of the boundary layer. Comparison of the calculated results with the solu-
tion obtained without taking into account the absorption makes it possible to evaluate the
relative role of absorption. The influence of radiation on the enthalpy profile and thickness
of the boundary layer is investigated.

It is considerably easier to take account of radiation in a boundary layer if we use the approximations
of greater or lesser optical thickness. For a gray gas in a state of local thermodynamic equilibrium, these
approximations reduce the integral-differential equation system to a purely differential system. A radiating
boundary layer has been considered in these approximations by various authors [1-5], with different assump-
tions regarding the viscosity, thermal conductivity, and convection. Oliver and McFadden [6] investigated
a radiating boundary layer at a plate, taking into account the radiative term in the exact energy equation,
which is valid for all optical thicknesses. The mass absorption constant was considered to be independent
of the frequeney, temperature, and gas density. The integral-differential energy equation is also solved in
the present article, without any restrictions on the optical thickness of the boundary layer. In contrast to
the study by Oliver and McFadden [6], however, the absorption constant is agsumed to be the same as in
heated air, i.e., depends strongly on temperature and density. The solution of the integral-differential
energy equation is compared with the gsolution obtained in the approximation of small optical thickness, i.e.,
without taking into account the absorption. Comparison of these solutions enables us to evaluate the relative
role of abgorption in radiative energy transfer.

We will consider the flow of a radiating, viscous, heat-conductive gas by a plate, with a constant
specific heat capacity ratio. Our assumption of a linear relationship between the enthalpy and temperature
does not wholly correspond to the real properties of air at high temperatures. However, the inaccuracy
due to use of this assumption in the solutions obtained with and without the absorption taken into account is
the same, so that comparison of these solutions permits evaluation of the relative role of absorption in
radiative energy transfer in the boundary layer.

A "gray" gas is assumed to be in a state of local thermodynamic equilibrium. Taking the radiation
into account under the conditions in questionleads onlyto the appearance of an additional term in the energy
equation. In the approximation of a small optical thickness, this additional term takes into account the two-
dimensionality of the radiation field. In finding the solution with the absorption taken into account, we ne-
glect the radiative energy transfer along the boundary layer. The latter assumption can be made if the
change in temperature along the boundary layer over the radiation path length is small. Because of the
comparatively slow variation of all the gas parameters in the longitudinal direction, the radiation field can
be treated as homogeneous except in the case of large radiation path lengths. In the latter case, the absorp-
tion becomes an effect of second order of smaliness in comparison with the emission, andthe radiation term
in the energy equation can be written in the same form as in the approximation of small optical thickness,
i.e., with the two-dimensionality of the radiation field taken into account. The error in the solution that
takes account of the absorption (resulting from assumption of one-dimensionality of the radiation field)
should therefore not have any material influence on the results. Taking the foregoing into account, the
equation system for a radiating boundary layer is written in the form:
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Fig. 1. Relative increase in enthalpy A resulting from absorption
as a function of dimensionless coordinate 1 for ¢ = 0.21. M
= 24; 2) 30; 3) 35. ®

Fig. 2. Solution of energy equation without absorption taken into

account for M,, = 24 and £ = 0.56. 1) Finite-difference method; 2)
expansion method.
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The boundary conditions are

when y =0 wu=v=0, h=h,;
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when y—>o00 u—>Us,, h—he.
An expression for the radiant heat flux S is obtained after integration of the equation for radiation transfer
from the plate surface to the upper edge of the boundary layer. The total radiative heat flux for each trans-
verse-coordinate value is found as the difference between the fluxes in the positive and negative directions
of the y axis. The external flux is treated as cold (T = 250°K), nonradiative, and nonabsorptive. Exter-
nal radiation sources are absent. The plate temperature is constant at 2000°K. The radiation produced by
the plate itself and its absorption in the boundary layer cannot be taken into account. Under these conditions,
we obtain the following expression for the derivative of the radiant heat flux:

1,'6 T R
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The first term on the right side of Eq. (3) corresponds to the approximation of an optically thin boundary
layer, the second takes into account the absorption of the gas in the boundary layer, and the third repre-
sents the absorption of the radiation reflected by the wall.

If the dependence of the viscosity on temperature is assumed to be linear, the thermal and dynamic
problems are separated. The solution of the dynamic problem is expressed by the usual Blasius function.
We will consequently solve only the energy equation., After converting to dimensionless quantities and using
the Dorodnitsyn transformation

v
gzxr; rl:s‘pldyr
0

(the apostrophes indicate dimensionless quantities), this equation acquires the form
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Fig. 3. Dimensionless enthalpy profiles in boundary layer. 1) With ra-
diation taken into aceount; 2) without radiation taken into account.

Fig. 4. Change in dimensionless thickness of boundary layer along plate.
1) With radiation taken into account; 2) without radiation taken into account.

oh ~ Oh 2
u—~+v-~»::(v—1)M;;(w~
0 dy on

The boundary conditions are
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when =0 A=h,;
{8)
when 1> 00 A f,.
Here the apostrophes on the dimengionless variables are omitted. The scales for determination of the di-
mensionless quantities were selected as follows:
K==L =1 m py= 0«

¥

o= — s By, = 0.30, for M. =24, 30;
i Re, ;
Uy = Uy hoy = 0.2 for My = 35.

oy = —2E .
1 Rey

The velocity profile necessary for solution of Eq. (4) was taken from the usual self-modeling solution with~
out taking account of the radiation.

The radiation properties of the gas were assumed to be the same asg in heated air. The volumetric
abgorption constant was approximated from the following formula:

w0 == ApmT, (6)

In Eq. (6), the density is measured in g/em® and the temperature in deg K. Traugott [7] gives the depen-
dence of the "gray" absorption constant of air on temperature with different densities. Taking these data
into account, the constants in Eq. (6) have the following values:

A= 0.9'10'19; m o= 1'5; 7= B,

In order to simplify evaluation of the integral exponents on the right side of Eq. (4), they can be replaced
with sufficient accuracy by the ordinary exponents found from the formula

E, (1) = 0.813 exp (— 1.5621). o

The integral-differential equation ¢) is solved with the boundary conditions in Eq. (5) by the finite-
difference method proposed by Brailovskaya and Chudov {8]. Integration was carried out from £ = 0.01 with
an interval of 0.005 for the longitudinal coordinate and 0.08 for the transverse coordinate. The distribution
of the gas parameters in the initial cross-section § = 0.01 was taken from the well-known self-modeling
solution for a nonradiating gas.
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The same method was used to find a solution to the simplified energy equation, retaining only the first
factor in the radiation term. This corresponds to use of the approximation of small optical thickness, where
the absorption is not taken into account.

Caleulations were made for Pr = 0.7, pp =6 -10"° Py, T, =250°K, and M, =24, 30, and 35. Athigher
values of M_, the dependence of the absorption constant on temperature and density is no longer described
by the formula given above [Eq. (6)] with the values of A, m, and n chosen. Figure 1 shows the increase in
enthalpy resulting from absorption as a function of 7 for one value of £ and different M,. It can be seen that
the absorption has almost no effect on the enthalpy in the boundary layer over the temperature range inves-
tigated (up to 16,000°K; M, = 35) with the initial conditions in question, although its influence increases with
rising M. For the conditions under considerations, the integral-differential equation ) can therefore be
replaced by the simplified, purely differential equation obtained from Eq. {4) by discarding the integral
terms for the absorption. Inthis cage, the initial assumption of one-dimensionality of the radiation field
loses all significance.

A method has been proposed for solution of the simplified energy equation that reduces to solution of
several successive ordinary differential equations. The enthalpy is written in the form of a series for
powers of the longitudinal coordinate é. The coefficients of the series are the unknown functions ¢ (self-
modeling variables inthe solution for a nonradiating gas). Substitution of the series into Eq. (4), taking in-
to account only the first factor in the radiation term, and analysis of the coefficients and powers yield the
following expression for the enthalpy:

B 1) =0,() + €56, ©) + €80, O + (8@ + .- ®)
In seeking 6), 6y, 6,, 9, etc., we obtain the ordinary differential equations
B or o, =DM,
2o oy, + AP M, ©)

the boundary conditions

0, (0) =y 0y(0) = s "
8, . .
# + 6,f, — 20,7 = 4672, (10)
the boundary conditions
0, (0) = 0, (00) = 0; (10"
Dot ojf, — a6, - 33079, (11)
T
the boundary conditions
. (117
6, (0) = B, () ~ 0;
?BS“ + 8,fy — 605, = 386'07/292’ (12)
T
the boundary conditions
0, (0) = 0, (a0) =0 (12"

ete.

The function 6,(¢) is the self-modeling solution for a nonradiating gas, Equations (10), (11), and (12)
with boundary conditions (10"), (11'), and (12'} were solved by the elimination method. The series inEq. (8),
which is the solution without the absorption taken into account, converges in the region close to the leading
edge of the plate at not overly large values of £, which depends on M,,. The region of practical convergence
decreases rapidly as M, increases. Figure 2 compares the solution of the simplified energy equation ob-
tained by the finite-difference method with the solution in series form, retaining the first four terms to-
gether with 6(¢£). The comparison is made for M,, = 24 and { = 0.56. [t can be seen that the greatest dif-
ference in the solutions occurs where the derivative dh/dn changes abruptly.

Figure 3 shows the enthalpy profiles for a nonradiating gas and with the radiation taken into account.
As can be seen from this figure, radiation substantially reduces the enthalpy in the boundary layer and
makes the profile steeper. The influence of radiation is greatest in the portion of the boundary layer where
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the temperature is maximal and the temperature gradient is not overly large. Under the conditions inques-
tion, radiation reduces the thickness of the thermal boundary layer. Figure 4 shows the change in bound-
ary~-layer thickness as a function of the longitudinal coordinate for M, = 30 with and without the radiation
taken into account.

NOTATION
v is the gpecific heat ratio;
p is the density;
o is the density of air under normal conditions;

X is the longitudinal coordinate;
y is the transverse coordinates

u, v are the velocity projections on x and y axes;
B ig the viscosity;

h ig the enthalpy;

Pr is the Prandlt number;
8 is the radiative heat flux;
Us is the velocity of incoming flow;
B is the plate thickness:
w0 is the volumetric congtant with forced emission taken into account;
o is the Stefan—Boltzmann constant;
T is the temperature;
M is the Mach number;
£, 1 are the Dorodnitsyn variables;
hy ig the staghation enthalpy;
Re is the Reynolds number;
L is the characterigtic linear dimension;
n o= %ﬂ/p is the mass absorption constant;
¢ =n/2V¢ is the self-modeling variable in solution for nonradiating gas;
£,(0) is the Blasius function;
¥
T= ) widy is the optical coordinate;
0
Ey, E, are the integral exponents;

Epl{r) = 5 wlexp (—wndw
1

By = (o’I“iM%‘ML /envaibag) is the dimensionless parameter characterizing ratio of radiant energy
flux to hydrodynamic flux;

£ = 4B,

V= udn/dx + pv

A = (hype ~hngabs) /) is the relative increase in enthalpy resulting from absorption,

Subscripts

W quantities at plate surface;

) quantities at outer edge of boundary layer;
) parameters of incoming flow;

M scale values.
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